• info@proteinlounge.com

Pathways

Metabolic Pathways

Displaying 25 to 36 (of 289 pathways)

D. psychrophila (Desulfotalea psychrophila) is a sulfate-reducing Gram-negative Delta-proteobacterium that is able to grow at temperatures below 0°C, i.e., psychrophilic and reside mostly in cold arctic marine sediments. The main mode of energy generation in D. psychrophila is sulfate reduction through fermentation. Investigating the biochemical mechanisms of such sulfate-reducing psychrophilic bacteria is vital for understanding the functioning of global biogeochemical cycles. The common fermentation products that occur in marine sediments are Acetate, Propionate, Butyrate, Lactate and Hydrogen. These bacteria utilize Pyruvate, Lactate, Alcohols and Hydrogen as carbon or energy sources. The metabolism of vital amino acids like Glycine, Serine and Threonine acts as[..]

D. vulgaris (Desulfovibrio vulgaris) is a Gram-negative, anaerobic, non-spore forming, curved rod-shaped bacteria, isolated from soil, animal intestines and feces, and fresh and salt water. The distinguishing characteristics of Desulfovibrio species are that they contain Desulfoviridin, a multimeric-dissimilatory sulfite reductase. D. vulgaris Hildenborough oxidize their energy source to that of Acetate and excrete this as their end product. Desulfovibrio also uses Hydrogen, Lactate, and Pyruvate as electron donors and this genus can grow easily on a Sulfate-Lactate medium in the absence of Oxygen. The biochemical processes like metabolism of Glycine, Seine and Threonine provides Acetate, Lactate and Pyruvate by converting amino acids to Pyruvate. During metabolism[..]

The Gram-negative, slender spiral-shaped, motile, asaccharolytic bacterium C. jejuni (Campylobacter jejuni) is commensal in cattle, swine, and birds. Campylobacteriosis is the illness caused by C. jejuni and is often known as Campylobacter Enteritis or human bacterial Gastroenteritis. Typical symptoms of C. jejuni foodborne illness include severe abdominal pain, diarrhea, fever, nausea, headache, and muscle pain. C. jejuni grows best at the body temperature of a bird, and seems to be well adapted to birds, which carry it without becoming ill. The bacterium is fragile. It cannot tolerate drying and can be killed by oxygen. It grows only if there is less than the atmospheric amounts of oxygen present (microaerophilic). Freezing reduces the number of Campylobacter[..]

The bacterium D. radiodurans (Deinococcus radiodurans) is a Gram-positive, red-pigmented, non-motile bacterium that shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation, but also it can survive acute exposures to Gamma radiation without dying or undergoing induced mutation. The  RecA  (Recombinase-A) protein of D. radiodurans is essential for the extreme radiation resistance of this organism. The biochemical metabolism of Glycine, Serine and Threonine provides amino acids like Glycine, which is highly essential to[..]

E. coli (Escherichia coli) is Gram-negative with external flagella. The strain E. coli CFT073 are uropathogenic and this group is responsible for Acute Cystitis and Pyelonephritis. E. coli is a remarkably diverse species because some strains living as harmless commensals in animal intestines, whereas other distinct genotypes including the enteropathogenic, enterohemorrhagic, enteroinvasive, enterotoxigenic, and enteroaggregative E. coli causes significant morbidity and mortality as human intestinal pathogens (Ref.1). Extra-intestinal E. coli are another varied group of life-threatening pathogens of this manifestly versatile species. This latter group of pathogens includes distinct clonal groups responsible for neonatal meningitis/sepsis and urinary tract infections.[..]

The bacterium E. coli (Escherichia coli) is one of the best and most thoroughly studied free-living organisms. It is also a remarkably diverse species because some E. coli strains live as harmless commensals in animal intestines, whereas other distinct genotypes including the enteropathogenic, enterohemorrhagic, enteroinvasive, enterotoxigenic, and enteroaggregative E. coli causes significant morbidity and mortality as human intestinal pathogens (Ref.1). Extra-intestinal E. coli are another varied group of life-threatening pathogens of this manifestly versatile species. This latter group of pathogens includes distinct clonal groups responsible for neonatal meningitis/sepsis and urinary tract infections. E. coli is Gram-negative, flagellated and members of the strain E.[..]

The bacterium E. coli O157 (Escherichia coli O157) is a worldwide threat to public health and are implicated in many outbreaks of Haemorrhagic Colitis, some of which included fatalities caused by Haemolytic Uraemic Syndrome. The severity of disease, the lack of effective treatment and the potential for large-scale outbreaks from contaminated food supplies have propelled intensive research on the pathogenesis and detection of E. coli O157 strains and these include candidate virulence factors, alternative metabolic capacities, several prophages and other new functions-all of which could be targets for surveillance (Ref.1). The enterohemorrhagic E. coli O157 EDL933 is Gram-negative having external flagella. The involvement of D- and L-Amino acid metabolism like L-Serine,[..]

The bacterium E. coli O157 (Escherichia coli O157) is a worldwide threat to public health and are implicated in many outbreaks of Haemorrhagic Colitis, some of which included fatalities caused by Haemolytic Uraemic Syndrome. The severity of disease, the lack of effective treatment and the potential for large-scale outbreaks from contaminated food supplies have propelled intensive research on the pathogenesis and detection of E. coli O157 strains and these include candidate virulence factors, alternative metabolic capacities, several prophages and other new functions-all of which could be targets for surveillance (Ref.1). The enterohemorrhagic E. coli O157 Sakai is Gram-negative, having external flagella and first derived from an outbreak in Sakai city, Japan. It[..]

E. faecalis (Enterococcus faecalis), also known as S. faecalis (Streptococcus faecalis), a Gram-positive bacterium, is a natural inhabitant of the mammalian gastrointestinal tract and is found in soil, sewage, water and food, frequently through fecal contamination. It is an opportunistic pathogen that is a major cause of urinary tract infections, Bacteremia, bloodstream infections, wound infections, and infective Endocarditis. It has become a nosocomial pathogen that is refractory to most therapeutic options (Ref.1). The involvement of D- and L-Amino acid metabolism like L-Serine, L-Threonine and Glycine plays a major role in cell sustenance, generation of several essential compounds, intact protein synthesis, and pathogenesis in E. faecalis (Ref.2). In E. faecalis[..]

Enterococci are Gram-positive, facultative anaerobic and Lactic acid producing bacteria. Most strains are non-hemolytic. E. faecalis (Enterococcus faecalis), also known as S. faecalis (Streptococcus faecalis), the second most frequent enterococcal species, is a saprophytic commensal that inhabits the oral cavity and gastrointestinal flora of humans and animals and behaves as an opportunistic pathogen causing severe urinary tract infections, surgical wound infections, Bacteremia, and bacterial Endocarditis. The increased incidence of E. faecalis infection has been related to the innate resistance of this microorganism to many commonly used antimicrobial agents and to its ability to become resistant to most, and in some cases to all, of the presently available[..]

E. carotovora (Erwinia carotovora) is a species of plant pathogenic, Gram-negative, facultatively anaerobic, rod-shaped bacteria which gets its name from carrots, but it affects many other vegetables, including potatoes, cucumbers, onions, tomatoes, lettuce and even some ornamental plants like Iris. The bacterial family Enterobacteriaceae is notable for its well studied human pathogens, including Salmonella, Yersinia, Shigella, and Escherichia spp. However, it also contains several plant pathogens. Erwinia carotovora subsp. atroseptica (Eca) strain SCRI1043 is the causative agent of Soft rot and Blackleg potato diseases (Ref.1). Gram-negative bacteria employ a type of conserved signaling called Quorum Sensing. Quorum Sensing regulates as a switch controlling metabolic[..]

G. sulfurreducens (Geobacter sulfurreducens), a delta-proteobacterium, is an obligately anaerobic, non-fermentative, non-motile, Gram-negative rod. Geobacter species are of interest because of their novel electron transfer capabilities, impact on the natural environment and their application to the Bioremediation of contaminated environments and harvesting electricity from waste organic matter. G. sulfurreducens breaks down heavy metals and is being used to clean up toxic metal waste sites like Uranium, etc. Central to the metabolism of G. sulfurreducens is the ability to anaerobically oxidize Acetate (an abundant electron donor and carbon source in subsurface zones) completely to  CO2  (Carbondioxide) and water using a variety of electron acceptors including[..]

Displaying 25 to 36 (of 289 pathways)
logo

 

9853 Pacific Heights Blvd.
Suite D., San Diego, CA 92121, USA

Tel: 858-224-2869
Fax: 858-205-1192
info@proteinlounge.com

Institutional License

Need our databases and tools to be availed by your whole university or institute? We recommend signing up for our Site License.

To set up a license, please contact: info@proteinlounge.com

Copyright © Protein Lounge Inc.