• info@proteinlounge.com

Pathways

Signaling Pathways

Displaying 61 to 72 (of 500 pathways)

Thrombin/TFIIa (Activated Factor-II) is a coagulation protein that has many effects in the Coagulation cascade, the homeostatic process of greatest interest. It is a multifunctional serine proteinase best known for its ability to cleave Fibrinogen to Fibrin. Fibrin forms an essential component of the Blood Clot. When a blood vessel is injured, bleeding is stopped by clotting factors which form a Thrombus/Clot of Fibrin threads that trap platelet aggregates. A clot is a jelly-like mass of thickened blood composed of Fibrin and platelet aggregates. The first step in clotting is adhesion of platelets, which are fragments of blood cells that circulate in the blood, to the cut edges of a damaged blood vessel. In this way, a platelet plug is formed and external bleeding[..]

Vitamin-C (Ascorbate or Ascorbic Acid) is an essential water-soluble Vitamin, well known for its antiscorbutic and antioxidant functions in humans. Vitamin-C was first identified by virtue of the essential role it plays in Collagen modification, preventing the nutritional deficiency Scurvy. Vitamin-C acts as a cofactor for the P4H (Prolyl Hydroxylase) enzymes, which post-translationally modify Collagen and thereby increase the strength and elasticity of tissues. Vitamin-C reduces the metal ion prosthetic groups of many enzymes, thereby maintaining the activity of enzymes. The fact that prevention of Scurvy through modification of Collagen is the most obvious role for Vitamin-C; it is not necessarily the only role of Vitamin-C (Ref.1). Collagen modification depends on[..]

Oxidative stress/Hypoxia is induced by a wide range of environmental factors including UV stress, pathogen invasion (hypersensitive reaction), oxygen shortage, etc. Generation of ROS (Reactive Oxygen Species) is characteristic feature of such stress conditions. Of the ROS, both Hydrogen Peroxide and Superoxide are produced in a number of cellular reactions and by various enzymes such as Lipoxygenases, Peroxidases, NADPH Oxidase, Xanthine Oxidase, etc to name a few. The main cellular components susceptible to damage by free radicals are lipids (peroxidation of unsaturated fatty acids in membranes), proteins (denaturation), carbohydrates and nucleic acids. Consequences of oxidative stress depend on tissue and/or species (i.e. their tolerance to Anoxia), on membrane[..]

The intercellular Adherens Junctions (AJs) are specialized sub-apical structures that function as principle mediators of cell-cell adhesion. Their disassembly correlates with a loss of cell-cell contact and an acquisition of migratory potential. The Adherens Junctions have a crucial role both as sensors of extracellular stimuli and in regulating the dynamics of epithelial cell sheets or with neighboring cells. Cadherins, the Type-I transmembrane proteins of the Adherens Junctions, are principally responsible for homotypic cell-cell adhesion. E-Cadherin, which is present primarily in epithelia, is the best-characterized Cadherin and represents the prototype of classical Cadherins. The extracellular domain of E-Cadherin binds to Ca2+ (Calcium) and forms complexes with[..]

Adhesion between neighboring epithelial cells is a crucial and tightly controlled process. The integrity of cell-cell contacts is essential for the regulation of electrolyte absorption and for the prevention of tumor metastasis. In polarized epithelia, specialized structures such as Adherens Junctions (AJs) and Tight Junctions (TJs) are responsible for the establishment of contacts between neighboring cells. The establishment and stability of Adherens Junction is tightly regulated-in particular, by Growth Factors, cytokines and hormones. Such regulation, although poorly understood, is quite essential for the modulation of paracellular permeability in various epithelia, for the epithelium mesenchyme transition, and for development, morphogenesis and wound healing[..]

Gap Junction (GJ) channels span two plasma membranes and are formed by the alignment of two hemichannels, each consisting of an oligomer of structural subunit proteins, called Cxs (Connexins). These junctional proteins constitute a multigene family whose members are distinguished according to their predicted molecular weight in kilodaltons. A Connexin structure consists of two extracellular loops (EL), four membrane-spanning domains (TM), one cytoplasmic loop (CL), one N-terminal tail (NT), and one C-terminal tail (CT) (Ref.1 & 2). During intercellular channel formation, six Connexins oligomerize into a Connexon or hemichannel that docks in homotypic, heterotypic and combined heterotypic/heteromeric arrangements. In total, as many as 14 different Connexon[..]

In an ever-changing environment, it is essential that organisms are able to sense these changes and to respond appropriately. Possible responses include alterations in gene expression and/or active movement towards or away from an environment. Most sensory pathways in eukaryotic organisms rely on serine, threonine or tyrosine protein kinases, whereas the most common sensory pathways in prokaryotes use a HAP (Histidine-Aspartate Phosphorelay) system. HAP systems have at least two components-a dimeric HPK (Histidine Protein Kinase) and a RR (Response Regulator). HAP systems are also found in many lower eukaryotes. Bacteria can sense a vast range of environmental signals, from the concentrations of nutrients and toxins to oxygen levels, pH, osmolarity and the intensity[..]

E. coli (Escherichia coli) is one of the main species of bacteria that live in the lower intestines of warm-blooded animals, including birds and mammals. They are necessary for the proper digestion of food and are a part of the intestinal flora. Its presence in groundwater is a common indicator of fecal contamination. Technically, the “coliform group” is defined to be all the aerobic and facultative anaerobic, non-spore-forming, Gram-negative, rod-shaped bacteria that ferment lactose with the production of gas within 48 hours at room temperature (Ref.1). Structurally, a Gram-negative prokaryotic cell has the following architectural regions; appendages in the form of flagella and pili (or fimbriae); a cell envelope consisting of a capsule (a layer of polysaccharide)[..]

During the course of transcription, the initial RNA product synthesized by RNA POL-II (RNA Polymerase-II), called a Primary transcript undergoes several processing steps including Capping, Splicing and Polyadenylation, before a functional mRNA (messenger RNA) is produced. RNA Polymerase initiates transcription at the first nucleotide of the first exon of a gene. Shortly after transcription begins, the 5' end of the nascent RNA is capped with 7-Methyl-Guanylate.Transcription by RNA polymerase-II terminates at any one of the multiple sites approx. 0.5-2kb downstream from the 3' end of the last exon in the transcript. The 3' end of a functional mRNA then is generated by endonucleolytic cleavage at a specific sequence, the Poly-A site, located at the 3' end of the final[..]

tRNA (Transfer RNA) is a small RNA (Ribonucleic Acid) chain (74-93 nucleotides) that transfers a specific amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis during translation. It has a site for amino acid attachment and a three-base region called the anticodon that recognizes the corresponding three-base codon region on mRNA via complementary base pairing. Each type of tRNA molecule can be attached to only one type of amino acid, but because the genetic code is degenerate - that is, it contains multiple codons that specify the same amino acid - multiple types of tRNA molecules bearing different anticodons may carry the same amino acid. tRNA has primary structure (the order of nucleotides from 5' to 3'), secondary structure (usually[..]

Transcription is the process through which a DNA sequence is enzymatically copied by an RNA polymerase to produce a complementary RNA. Transcription can also be defined as a process that transcribes genetic information from DNA into RNA. In eukaryotes, it takes place in the nucleus, mitochondria and chloroplast. Transcription is performed by DNA-directed RNA Polymerases. Unlike DNA Polymerases, RNA Polymerases do not need a primer to start the reaction. While Bacteria contain only 1 RNA Polymerase, there are 3 different RNA polymerases in eukaryotic cells, which catalyze the synthesis of three types of RNA. RNA Pol-I (RNA Polymerase-I) is located in the nucleolus and transcribes rRNA (ribosomal RNA). RNA Pol-II (RNA Polymerase-II) is localized to the nucleus, and[..]

The Blood-Testes Barrier (abbreviated as BTB) acts as a physical barrier between the blood vessels and the seminiferous tubules of the testes. This barrier is formed by tight and adherens connections between the Sertoli cells, which are sustentacular cells (supporting cells) of the seminiferous tubules, and nourish the spermatogonia (Ref.1). In the testes, tight and adherens junctions are dynamically remodeled to allow the movement of post-meiotic germ cells across the seminiferous epithelium and the timely release of spermatids into the tubular lumen. Three main functions are ascribed to the blood-testes barrier; (i) creates a specialized environment; (ii) regulates the passage of molecules; and (iii) serves as an immunological barrier. When the blood-testes barrier[..]

Displaying 61 to 72 (of 500 pathways)
logo

 

9853 Pacific Heights Blvd.
Suite D., San Diego, CA 92121, USA

Tel: 858-224-2869
Fax: 858-205-1192
info@proteinlounge.com

Institutional License

Need our databases and tools to be availed by your whole university or institute? We recommend signing up for our Site License.

To set up a license, please contact: info@proteinlounge.com

Copyright © Protein Lounge Inc.