• info@proteinlounge.com


All Pathways

Displaying 61 to 72 (of 812 pathways)

Steroid hormones are lipophilic, low-molecular weight compounds derived from Cholesterol that play important physiological roles. The steroid hormones are synthesized mainly by Endocrine Glands such as the the Adrenal Cortex and the Gonads (Ovary and Testes), and are then released into the blood circulation. There are five major classes of steroid hormones. They are the (i) Glucocorticoids (Anti-Stress Hormones), Cortisol is the major representative in most mammals; Mineralocorticoids (Na+ Uptake Regulators), Aldosterone being most prominent; Androgens (Male Sex Hormones), such as Testosterone; Estrogens (Female Sex Hormones), including Estrodiol and Estrone; and, Progestogens (Progestational hormones), such as Progesterone. The Adrenal Cortex is responsible for[..]

AMLs (Acute Myeloid Leukemias) are characterized with chromosomal translocations resulting in the formation of fusion proteins. Understanding PML (Acute Promyelocytic Leukemia Inducer) function has become an area of intense research because of its involvement in the pathogenesis of APL (Acute Promyelocytic Leukemia), a distinct subtype of Myeloid Leukemia. In the vast majority of APL case studies, the PML gene (on Chromosome-15) fuses to the RAR-Alpha gene (Retinoic Acid Receptor-Alpha) (on Chromosome-17) as a consequence of reciprocal and balanced chromosomal translocations. In the t(15;17) chromosomal translocation, which is specific for APL, PML is found in a reciprocal translocation with the RAR-Alpha resulting in the formation of PML-RAR-Alpha and RAR-Alpha-PML[..]

Vitamin A and its analogs, collectively termed retinoids, have a profound effect on cell growth, differentiation, apoptosis, and morphogenesis. Retinol, the lipid-soluble vitamin A, is an absolute requirement for normal growth, vision and differentiation of epithelial tissues in mammals. Retinol must be obtained directly through dietary intake, but may also be derived in its provitamin A forms obtained through dietary carotenoids (Ref.1 and 2). Retinoids bind to six distinct nuclear receptors in mammals and regulate the expression of target genes. The Retinoic Acid Receptors (RARs) and Retinoid X Receptors are among the most intensely studied nuclear hormone receptors. RARs are ligand-controlled transcription factors that function as heterodimers with RXRs to regulate[..]

Retinoic Acid, a lipophilic molecule and a metabolite of Vitamin-A (all-trans-Retinol), affects gene transcription and modulates a wide variety of biological processes like Cell Proliferation, Differentiation, including Apoptosis. Retinoic Acid mediated gene transcription depends on the rate of transport of Retinoic Acid to target cells and the timing of exposure of Retinoic Acid to RARs (Retinoic Acid Receptors) in the target tissues. The all-trans-Retinoic Acid, the Carboxylic Acid form of Vitamin-A is of biological significance since it has high circulating levels than other isomers of Retinoic Acid. The targets of all-trans-Retinoic Acid and RARs include a multitude of Structural genes, Oncogenes, Transcription Factors and Cytokines. Although biologically active[..]

The ESRs (Estrogen Receptors) are ligand-dependent transcription factors and are important Nuclear Hormone Receptors that act as regulators of cell growth, differentiation and malignant transformation. Transcriptional activation by ESRs is accomplished through specific and general cofactor complexes that assemble with the receptor at target promoters to regulate transcription. The chief ligand for ESR is the ovarian steroid hormone Estrogen, which has a primary role in the establishment and maintenance of reproductive function (Ref.1). Naturally occurring forms of Estrogen are Estradiol, Estriol, and Estrone. Estradiol is the most commonly occurring form of Estrogen in non-pregnant women. Binding of Estrogen to the ESR promotes a conformational change in the receptor[..]

A. tumefaciens (Agrobacterium tumefaciens) is a species of bacteria that causes tumors (commonly known as ‘Galls’ or ‘Crown Galls’) in dicots. This Gram-negative bacterium form Crown Gall by inserting a small segment of DNA (known as the T-DNA, for ‘Transfer DNA’) into the plant cell, which is incorporated at a semi-random location into the plant genome. The T-DNA contains genes encoding enzymes that cause the plant to create specialized sugars which the bacteria metabolize to form Opines. Agrobacterium is an Alpha-Proteobacterium of the family Rhizobiaceae and are parasitic to the plant. A. tumefaciens C58 is the first fully sequenced pathovar isolated from a Cherry tree Crown Gall. The genome of A. tumefaciens C58 consists of a circular chromosome, two[..]

A. tumefaciens (Agrobacterium tumefaciens) is a plant pathogen with the unique ability to transfer a defined segment of DNA to eukaryotes, where it integrates into the eukaryotic genome. It is a Gram-negative bacterium that causes tumors commonly known as ‘Galls’ or ‘Crown Galls’ in dicots. Crown Gall is formed by inserting a small segment of DNA (known as the T-DNA, for ‘Transfer DNA’) into the plant cell, which is incorporated at a semi-random location into the plant genome. The T-DNA contains genes encoding enzymes that cause the plant to create specialized sugars which the bacteria metabolize to form Opines. Agrobacterium is an Alpha-Proteobacterium of the family Rhizobiaceae and are parasitic to the plant. A. tumefaciens C58 is the first fully[..]

Members of the bacterial genus Bdellovibrio are obligately predacious upon other Gram-negative bacteria. Bdellovibrio are ubiquitous in nature and their prey includes plant, animal, and human pathogens. Despite the small dimensions of Bdellovibrio cells, its genome consists of 3,782,950 base pairs on a single circular chromosome. B. bacteriovorus (Bdellovibrio bacteriovorus) is a highly motile, vibrio-shaped, Gram-negative Delta-Proteobacterium and in its attack phase, it swims at high speed using a single sheathed polar flagellum with a characteristic dampened filament waveform (Ref.1). Once B. bacteriovorus has collided with a prey cell, it remains reversibly attached to it for a short “recognition” period, after which it becomes irreversibly anchored via the[..]

B. longum (Bifidobacterium longum) is among the first colonizers of the sterile digestive tract of newborns and predominate in breast-fed infants. Bifidobacteria including B. longum are Gram-positive, anaerobic and branched rod-shaped bacteria that naturally colonize in the human gastrointestinal tract and vagina. These are beneficial bacteria that contribute to digestion, immunity promotion and inhibition of pathogens, and production of vitamins (Ref.1). The ability to scavenge from a large variety of nutrients likely contributes to the competitiveness and persistence of Bifidobacteria in the colon. Bifidobacteria metabolize nucleotides, some key vitamins and all amino acids (which is evident from the cell wall composition of B. longum that contains both D- and[..]

The Cyanidiophyceae, including C. merolae (Cyanidioschyzon merolae), are a basal clade within the red lineage plastids. The red algae are thought to be one of the basal eukaryotic lineages, and may possess ancestral features of eukaryotic phototrophs. C. merolae is the first species of algae to be sequenced; the organism consists of a single cell that has three smaller compartments, each containing DNA. It is a unicellular, obligate photoautotrophic red alga that is found in acidic hot springs. The C. merolae cell contains one mitochondrion, one plastid with a centrally located plastid nucleoid, one Golgi body, and one microbody (Ref.1). The major biological processes of C. merolae are dependant on its plastid genome. The striking feature of this genome is the high[..]

The genome of C. jejuni RM1221 (Campylobacter jejuni RM1221) is a single circular chromosome, 1,777,831 bp in length, with an average G+C content of 30.31 percent. There are a total of 1,884 predicted coding regions in the genome with an average ORF (Open Reading Frame) length of 885 bp. The genomic structure of C. jejuni RM1221 is syntenic with the genome of C. jejuni NCTC11168. C. jejuni RM1221 is isolated from a chicken carcass. There are a number of unique features present in C. jejuni RM1221, which do not occur in the previously sequenced C. jejuni strain NCTC11168, including the colonization and invasion factors, unique LOS (Lipooligosaccharide) and capsule loci, and other unique ORFs. In general, the Gram-negative, slender spiral-shaped, motile, asaccharolytic[..]

The Gram-negative, slender spiral-shaped, motile, asaccharolytic bacterium C. jejuni (Campylobacter jejuni) is commensal in cattle, swine, and birds. Campylobacteriosis is the illness caused by C. jejuni and is often known as Campylobacter Enteritis or human bacterial Gastroenteritis. Typical symptoms of C. jejuni foodborne illness include severe abdominal pain, diarrhea, fever, nausea, headache, and muscle pain. C. jejuni grows best at the body temperature of a bird, and seems to be well adapted to birds, which carry it without becoming ill. The bacterium is fragile. It cannot tolerate drying and can be killed by oxygen. It grows only if there is less than the atmospheric amounts of oxygen present (microaerophilic). Freezing reduces the number of Campylobacter[..]

Displaying 61 to 72 (of 812 pathways)


9853 Pacific Heights Blvd.
Suite D., San Diego, CA 92121, USA

Tel: 858-224-2869
Fax: 858-205-1192

Institutional License

Need our databases and tools to be availed by your whole university or institute? We recommend signing up for our Site License.

To set up a license, please contact: info@proteinlounge.com

Copyright © Protein Lounge Inc.
   Terms & Conditions