• info@proteinlounge.com

Pathways

All Pathways

Displaying 13 to 24 (of 789 pathways)

The Rho family of small GTP-binding proteins comprises a group of signaling molecules that are activated by a variety of Growth factors, Cytokines, Adhesion molecules, Hormones, Integrins, G-proteins and other biologically active substances and regulate a wide range of biological processes, including Reorganization of the Actin Cytoskeleton, Transcriptional Regulation, Vesicle Trafficking, Morphogenesis, Neutrophil activation, Phagocytosis and activation of the NADPH Oxidase, Mitogenesis, Apoptosis and Tumorigenesis. The mammalian Rho GTPase family currently consists of three subfamilies, Rho (RhoA, RhoB and RhoC), Rac (Rac1, Rac2 and Rac3) and CDC42 (Cell Division Cycle-42) (CDC42Hs and G25K). The best-characterized family members of Rho Family GTPase are RhoA, Rac1[..]

Epithelia in multicellular organisms constitute the frontier that separates the individual from the environment. Epithelia are sites of exchange as well as barriers, for the transit of ions and molecules from and into the organism. Epithelial cells achieve this by providing cellular borders that cover external and internal surfaces throughout the body. Complexes between adjacent cells include Gap Junctions, Desmosomes, Adherens Junctions (AJs) and Tight Junctions (TJs). Such junctions are quite essential for the modulation of paracellular permeability in various epithelia. Vertebrate epithelial cells exhibit Tight Junctions that lie apical to Adherens Junctions. Tight Junctions have an organizing role in epithelial polarization and establish an apico-lateral barrier to[..]

T cell responses against tumors require the recognition of specific peptides derived from tumor antigens in association with MIC (MHC Class I Molecules) by CD81 T cells expressing TCRs (T Cell Receptors). Such response generates intracellular antigen processing which are highly selective and binds only to some of the numerous polymorphic MHC class I molecules and often-impaired expression of MHC class I on tumor cells. Human gamma delta T cells are MICA (MHC-Class-Ipolypeptide-Related sequence-A) and MICB (MHC-Class-Ipolypeptide-Related sequence-B), which are distantly related to MHC class I but are functionally distinct. These molecules have no role in the presentation of intracellular peptide antigens instead MICA and MICB are closely related and[..]

Embryonic development is the generation of a multicellular organism from a single cell. During this process, tissues and organs are differentiated and positioned at different parts of the organism. In animals, Embryonic development consists of 4 stages: Cleavage, Patterning, Differentiation and Growth. Mammalian Cleavage is strikingly different from most other patterns of Embryonic cell division. The mammalian oocyte is released from the ovary and swept by the fimbriae into the oviduct. The mature oocyte is surrounded by a protective coat of noncellular material (made of extracellular matrix and glycoproteins), called the Zona pellucida. Fertilization occurs in the ampulla of the oviduct, a region close to the ovary. For fertilization to occur, a haploid sperm cell[..]

An Embryo is a multicellular diploid eukaryote in its earliest stage of development, from the time of first cell division until birth, hatching, or germination. In Humans, it is called an Embryo from the moment of Fertilization until the end of the 8th week of gestational age, whereafter it is instead called a Fetus. In organisms that reproduce sexually, once a Sperm fertilizes an Egg cell, the result is a cell called the Zygote. In animals, the development of the Zygote into an embryo proceeds through specific recognizable stages of Blastula, Gastrula, and Organogenesis. Little is known about the specific genes that regulate these early events or how interactions among cells or how cellular interactions with other factors in the three-dimensional environment of the[..]

Nitrosomonas europaea  is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The cell's demand for carbon has to be met almost entirely by the fixation of carbon dioxide. Additional mineral salts complete the cell's nutritional needs. Although this bacterium can incorporate small amounts of organic compounds into cellular biomass, there is an obligate requirement for oxidation of ammonia and assimilation of inorganic nutrients to support growth. Besides, Amino acids also play an important role in supporting[..]

Prochlorococcus is a unicellular cyanobacterium that dominates the temperate and tropical oceans. It lacks phycobilisomes that are characteristic of cyanobacteria, and contains chlorophyll b as its major accessory pigment. This enables it to absorb blue light efficiently at the low-light intensities and blue wavelengths characteristic of the deep euphotic zone. It contributes 30-80% of the total photosynthesis in the oligotrophic oceans, and thus plays a significant role in the global carbon cycle and the Earth's climate. Prochlorococcus marinus MED4 is a member of Prochlorophytes. The genome of Prochlorococcus marinus MED4, a high-light-adapted strain, is 1,657,990 base pairs (bp). This is the smallest of any oxygenic phototroph—significantly smaller than that of[..]

The marine unicellular Cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. Prochlorococcus marinus, the dominant photosynthetic organism in the ocean, is found in two main ecological forms: high-light-adapted genotypes in the upper part of the water column and low-light-adapted genotypes at the bottom of the illuminated layer. P. marinus SS120, the complete genome sequence reported here, is an extremely low-light-adapted form. The genome of P. marinus SS120 is composed of a single circular chromosome of 1,751,080 bp with an average G+C content of 36.4%. It contains 1,884 predicted protein-coding genes with an average size of 825 bp, a single rRNA operon, and 40 tRNA genes. It lacks many genes that are involved in photosynthesis, DNA repair,[..]

The marine unicellular Cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Prochlorococcus marinus lacks phycobilisomes that are characteristic of Cyanobacteria, and contains Chlorophyll b as its major accessory pigment. This enables it to absorb blue light efficiently at the low-light intensities and blue wavelengths characteristic of the deep euphotic zone. It contributes 30-80% of the total photosynthesis in the oligotrophic oceans, and thus plays a significant role in the global carbon cycle and the Earth's climate. Prochlorococcus marinus MIT9313 is a member of Prochlorophytes The[..]

The marine unicellular Cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. Prochlorococcus marinus, the dominant photosynthetic organism in the ocean, is found in two main ecological forms: high-light-adapted genotypes in the upper part of the water column and low-light-adapted genotypes at the bottom of the illuminated layer. P. marinus SS120, the complete genome sequence reported here, is an extremely low-light-adapted form. The genome of P. marinus SS120 is composed of a single circular chromosome of 1,751,080 bp with an average G+C content of 36.4%. It contains 1,884 predicted protein-coding genes with an average size of 825 bp, a single rRNA operon, and 40 tRNA genes. It lacks many genes that are involved in photosynthesis, DNA repair,[..]

The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Prochlorococcus marinus lacks phycobilisomes that are characteristic of cyanobacteria, and contains chlorophyll b as its major accessory pigment. This enables it to absorb blue light efficiently at the low-light intensities and blue wavelengths characteristic of the deep euphotic zone. It contributes 30-80% of the total photosynthesis in the oligotrophic oceans, and thus plays a significant role in the global carbon cycle and the Earth's climate. Prochlorococcus marinus MIT9313 is a member of Prochlorophytes The[..]

Prochlorococcus is a unicellular cyanobacterium that dominates the temperate and tropical oceans. It lacks phycobilisomes that are characteristic of cyanobacteria, and contains chlorophyll b as its major accessory pigment. This enables it to absorb blue light efficiently at the low-light intensities and blue wavelengths characteristic of the deep euphotic zone. It contributes 30-80% of the total photosynthesis in the oligotrophic oceans, and thus plays a significant role in the global carbon cycle and the Earth's climate. Prochlorococcus marinus MED4 is a member of Prochlorophytes. The genome of Prochlorococcus MED4, a high-light-adapted strain, is 1,657,990 base pairs (bp). This is the smallest of any oxygenic phototroph—significantly smaller than that of the[..]

Displaying 13 to 24 (of 789 pathways)
logo

 

9853 Pacific Heights Blvd.
Suite D., San Diego, CA 92121, USA

Tel: 858-224-2869
Fax: 858-205-1192
info@proteinlounge.com

Institutional License

Need our databases and tools to be availed by your whole university or institute? We recommend signing up for our Site License.

To set up a license, please contact: info@proteinlounge.com

Copyright © Protein Lounge Inc.